
Optimising Quantified Expressions in Constraint
Models

Ian Gent, Ian Miguel, and Andrea Rendl

University of St Andrews
School of Computer Science, North Haugh, St Andrews, Scotland, UK

ipg,ianm,andrea@cs.st-andrews.ac.uk

http://www.cs.st-andrews.ac.uk

Abstract. One of the key difficulties in Constraint Modeling lies in for-
mulating an effective constraint model of an input problem for input
to a constraint solver: many different models exist for a given prob-
lem and it is often difficult - even for experts - to determine the model
which is solved most effectively by a constraint solver. In recent years,
solver-independent modelling languages (MLs) have become increasingly
popular among the CP community, such as OPL [10], Essence′ [1] or
MiniZinc [5]. These languages are very expressive and allow the user to
focus on the problem model rather than on the solver input syntax. An
important construct in solver-independent MLs are quantifiers, in par-
ticular ∀, ∃,

∑
, which are used to scale constraints and expressions in

constraints, similarly to for-loops in program code. However, quantified
expressions often contain redundancies, in particular in models formu-
lated by novices. Such redundancies can have a notable impact on the
solving performance of the model, in particular since they often increase
with problem size. This paper presents new constraint model optimi-
sation techniques concerned with optimising quantified expressions at
problem class level. Our experimental results show that quantified ex-
pression optimisations can reduce solving time very considerably.

1 Introduction

CP is often inaccessible to novice users, precluding its widespread use. One of
the principal reasons that expertise is required is the so-called modelling bot-
tleneck: the task of formulating an effective constraint model (one that can be
solved efficiently) for input to a constraint solver. In order to address this prob-
lem, recent research in automated constraint modelling has begun to investigate
automated model optimisations, which can compensate for a wide selection of
poor modelling choices that novices (and some experts!) often make.

In previous work [6] we have presented several of these optimisation tech-
niques, which can provide impressive speedups. In this paper, we extend this
work with quantified expression optimisations. Quantified expressions in con-
straint models perform a similar function to loop constructs in general program-
ming languages. Just as in programming, there are a number of potential pitfalls
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in using quantified expressions that can lead an inexperienced user to produce
an inefficient model. We will demonstrate that these pitfalls can be avoided au-
tomatically through the use of the optimisations described in this paper, which
can lead to a substantial increase in model performance over a naive formulation.

2 Background

In recent years, solver-independent constraint modelling languages have become
increasingly popular in Constraint Programming. They all provide the same
benefits:

– the separation of problem model and parameter (data) specification
– expressive constructs, such as quantified expressions
– advanced data types, such as multi-dimensional arrays
– specific tools, such as syntax highlighting or interactive frontends (languages

Essence′ and MiniZinc [5] provide frontends, Tailor [6] (Essence′) and
the MiniZinc-FlatZinc translator, mzn2fzn [5], that automatically translate
solver-independent models to particular solvers).

Throughout this paper, we use Essence′ as solver-independent modelling lan-
guage, however, the choice of modelling language is unimportant.

For illustration, we consider the n-queens problem [4]: placing n queens on
an n×n chessboard such that no two queens attack another. A naive constraint
model is given in Example 1, which contains n variables (array ‘q’), where each
variable represents the row-position of a queen and thus ranges over values (1..n)
(line 1). The first constraint (line 5) states that no two queens may be in the
same column. The second and third constraints (line 8-10,12-13) disallow two
queens positioned on the same NW- and SW-diagonal, respectively.

Example 1. Naive n-Queens problem model formulated in solver-independent con-

straint modelling language Essence′

0 given n : int ( 1 . . ) $ number o f queens $
1 find q : matrix indexed by [ int ( 1 . . n ) ] of int ( 1 . . n )
2
3 such that
4 $ queens po s i t i oned in d i f f e r e n t columns $
5 a l ld i f f e rent ( q ) ,
6
7 $ no two queens on same NW−SE diagona l $
8 f o ra l l i , j : int ( 1 . . n ) .
9 ( i !=j ) => ( q [ i ]+i != q [ j ]+j ) ,

10
11 $ no two queens on same SW−NE diagona l $
12 f o ra l l i , j : int ( 1 . . n ) .
13 ( i !=j ) => ( q [ i ]−i != q [ j ]−j )

The main difficulty in constraint modelling is to formulate a model of high
quality, i.e. a model which will be solved efficiently. For instance, the n-queens
model above is inefficient compared to other n-queens constraint models [4],
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however, it is an intuitive formulation and hence very likely to come from a
novice.

Quantified Expressions (denoted quantifications) are a very powerful means
in constraint modelling languages to generate sequences of expressions in a com-
pact way. We consider quantifications of the form

ϕ i1, ..., im : int(lb..ub). E(i1, ..., im)

where ϕ ∈ {∀,∃,
∑
} is a quantifier that ranges over m quantifying variables

I = {i1, . . . , im}, each defined over the quantifying domain, the finite integer
range int(lb..ub) (denoted D for brevity), and E(i1, . . . , im) (or EI) denotes an
arbitrary expression that is quantified over {i1, . . . , im}. For brevity, we mainly
denote quantifications by ϕID.EI . Note, that lb and ub can contain arbitrary
complex expressions, but no decision variables.

As an example, consider the following quantification that has been taken
from the n-Queens model from Example 1:

∀i, j : int(1..n). (i 6= j)⇒ q[i] + i 6= q[j] + j

This is a universal quantification, where quantifier ∀ ranges over two variables i
and j, hence the set of quantifying variables is I={i, j}, which ranges over the
quantifying domain D=(1..n). The quantified expression is (i 6= j)⇒ q[i] + i 6=
q[j] + j.

Similarly to for-loops in program code, quantifications can include redundan-
cies, in particular when formulated by novices. Typically, the negative effect of
redundancies increases with the size of the quantifying domain and the number
of quantifying variables, i.e. with m(ub−lb+1), which can be vast in large in-
stances. The elimination of redundancies in quantifications is therefore vital. In
the following two sections, we will discuss two types of redundancies in quantifi-
cations and will show how to automatically eliminate them.

3 Moving Loop-invariant Expressions

In some cases, quantified expressions can be reformulated into equivalent, more
efficient representations. Therefore, in this section, we study equivalent repre-
sentations involving loop-invariant expressions. We call A in ϕI .A ⊕ EI loop-
invariant, if A is not quantified by any i ∈ I and there exists an operator ⊕′
such that

ϕI .A⊕ EI ≡ A⊕′ ϕI .EI (1)

As an example, consider ∀I(x=0) ∨ (y[i]=i) that contains the loop-invariant
expression (x=0) and can be reformulated into (x=0) ∨ ∀Iy[i]=i using the law
of distributivity. In this case, the latter representation (outside-representation)
is typically far more efficient than the former (inside-representation).
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First, we notice that the inside-representation introduces common subexpres-
sions as soon as the corresponding quantification is unrolled. More specifically,
every quantification ϕ i1, ..., im:int(lb..ub). A⊕ EI is unrolled to

(A⊕ E1)⊕ϕ (A⊕ E2)⊕ϕ · · · ⊕ϕ (A⊕ Ek)

where ⊕ϕ represents the corresponding operation for ϕ, i.e. ⊕∀=∧, ⊕∃=∨ and
⊕∑=+. The number of unrolled subexpressions, k, depends on whether A⊕EI

is guarded: if unguarded, k=m∗(ub−lb+1), otherwise 1≤k≤m∗(ub−lb+1). Evi-
dently, the unrolled quantification contains k occurrences of the loop-invariant
expression A, i.e. common subexpressions that can be eliminated by CSE [6].
We therefore see that if CSE is applied, the redundancies from loop-invariant
expressions in quantifications can be easily eliminated, therefore the inside-
representation is not necessarily always worse than the outside-representation.

3.1 Example: Peaceful Armies of Queens

For illustration, we want to consider an example, a model of the Peaceful Army
of Queens Problem from [8]: place two maximal, equally-sized “armies” of queens
(black and white) on an n×n chessboard such that no two queens of the opposite
colour attack another.

Example 2. Peaceful Army of Queens Model from [8]

0 given n : int
1 lett ing N be domain int ( 1 . . n )
2
3 find board : matrix indexed by [ N , N ] of int ( 0 . . 2 )
4 find numberOfQueens : int ( 1 . . ( n∗n )/2)
5
6 maximising numberOfQueens
7 such that
8 $ we have the same number o f white and black queens
9 (sum row : N . sum col : N .

10 board [ row , col ] = 1) = numberOfQueens ,
11 (sum row : N . sum col : N .
12 board [ row , col ] = 2) = numberOfQueens ,
13
14 $ white at [ row , c o l ] => no black on same row/ co l / d iagona l $
15 f o ra l l row , col : N .
16 ( board [ row , col ] = 1) =>
17 ( f o ra l l i : N .
18 ( ( i != row ) => ( board [ i , col ] < 2) ) /\ $ row $
19 ( ( i != col ) => ( board [ row , i ] < 2) ) /\ $ column $
20 ( ( ( row+i <= n ) /\ ( col+i <= n ) ) =>
21 ( board [ row+i , col+i ] < 2) ) /\ $ S−W diag $
22 etc , $ other d iagona l s $
23
24 $ black at [ row , c o l ] => no white on same row/ co l / d iagona l $
25 f o ra l l row , col : N .
26 ( board [ row , col ] = 2) =>
27 ( f o ra l l j : N .
28 ( ( j != row ) => ( board [ j , col ] != 1) ) /\ $ row $
29 ( ( j != col ) => ( board [ row , j ] != 1) ) /\ $ column $
30 ( ( ( row+j <= n ) /\ ( col+j <= n ) ) =>
31 ( board [ row+j , col+j ] != 1) ) /\ $ S−W diag $
32 etc $ other d iagona l s $
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In our model, we introduce a variable for each cell of the board that can take 3
values: ‘0’ if empty, ‘1’ if occupied by a black queen and ‘2’ if occupied by a white
queen. The array ‘board’ contains these variables (line 3). Then we introduce
another variable, ‘numberOfQueens’ (line 4), that we want to maximise (line 6).
The first set of constraints (line 9-12) sets the number of white and black queens.
The second set of constraints (line 15-24) states the non-attacking constraints for
the black army: for any position (row,col) on the board, if (row,col) is occupied
by a black queen, then no white queen may be positioned on the same row
(line 18), same column (line 20) and the same diagonals (we only show the S-W
diagonal in line 22; the other three diagonal constraints are similar). Similarly,
the third set of constraints (line 27-36) describes the non-attacking constraints
for the white army.

Hence, the non-attacking constraints are of the form

∀col, row.queenAt(row, col)⇒ ∀i.
∧
j

positionConstraintj(col, row, i) (2)

where queenAt(col, row) represents the constraint ‘a black/white queen is po-
sitioned at (row,col)’ and positionConstraint(col, row, i) corresponds to the
six position constraints, i.e. ‘no white/black queen may be positioned on the
same row/column/4 diagonals’. Expression queenAt(col, row) is loop-invariant
of ∀i.

∧
j positionConstraintj(col, row, i) and can hence be moved inside the

quantification, yielding the inside representation:

∀col, row, i.
∧
j

queenAt(row, col)⇒ positionConstraintj(col, row, i) (3)

Equation 2 represents the outside-representation while Equation 3 represents the
respective inside-representation. Hence, the model in Example 2 expresses the
non-attacking constraints using the outside-representation. For illustration, we
give an excerpt of an equivalent model using the inside-representation in Exam-
ple 3, showing the non-attacking constraint for the black army (corresponding
to the constraint in line(14-24) in Example 2).

Example 3. Excerpt of Peaceful Army of Queens Model, showing the non-attacking
constraint for the black army in inside-representation.

$ white at [ row , c o l ] => no black on same row/ co l / d iagona l $
f o ra l l row , col , i : N .

( board [ row , col ]=1) => ( ( i != row ) => ( board [ i , col ] < 2) ) $ row $
/\

( board [ row , col ]=1) => ( ( i != col ) => ( board [ row , i ] < 2) ) $ column $
/\

( board [ row , col ]=1) => ( ( ( row+i <= n ) /\ ( col+i <= n ) ) =>
( board [ row+i , col+i ] < 2) ) $ S−W diag $

/\ etc , $ other d iagona l s $

We compare both models (inside- versus outside-representation) in our em-
pirical comparison in Section 5 where we will see that - against common ex-
pectations - the inside-representation (Example 3) clearly dominates the outside
representation (Example 2).
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3.2 Equivalence Cases

There are several cases of equivalence, i.e. cases for which Eq. 1 holds:

Inside-Representation Outside-Representation
Case (1) ∀IA∧EI (¬∃ID(I)) ∨ (A∧∀IEI)
Case (2) ∀IA∨EI A∨(∀IEI))
Case (3) ∀IA⇒EI A⇒(∀IEI)
Case (4) ∃IA∨EI (∃ID(I)) ∧ (A∨∃IEI)
Case (5) ∃IA∧EI A∧(∃IEI)
Case (6)

∑
I A+EI mA+

∑
IEI where m = |I|

Case (7)
∑

I A∗EI A∗(
∑

IEI)

Note, that if the quantifying domain D is empty, then the quantified expression is
interpreted as its identity, i.e. ∀i∈DE ≡ true, ∃i∈DE ≡ false and

∑
i∈D E ≡ 0

if D is empty. Therefore, cases (1) and (4) are adjusted by adding respective
terms. For instance, in case (1), ¬∃ID(I) which corresponds to ‘D is empty for
all I’ is disjoint with A ∧ ∀IEI .

If loop-invariant A is a constant, then both the inside- and outside-representations
are the same. For instance, in case (3), if A evaluates to false then both represen-
tations evaluate to true. Otherwise, if A evaluates to true, both (∀I true⇒ EI)
and (true⇒ (∀IEI)) evaluate to ∀IEI . Furthermore, cases (1), (4) and (6) yield
identical flat representations (if CSE is applied) and are therefore not included
in our comparison.

3.3 Inside- versus Outside-Representation

We want to study the differences between the inside- and the outside-representation
wrt its representation and efficiency in a constraint solver. Therefore, it is es-
sential to consider each representation at the abstraction level in which it is
processed by the solver: its flat representation. The flat representation is ob-
tained by flattening [3] every constraint to the constraints (‘propagators’) pro-
vided by the target solver, which involves introducing auxiliary variables and
additional constraints. For instance, ‘A ⇒ (x=y)’ would be flattened to ‘(A ⇒
aux)∧ (aux⇔ x=y)’, introducing auxiliary variable aux. Flattening is a strictly
solver-dependent procedure, therefore we do not conduct a generic analysis (cov-
ering all possible cases of possible propagators wrt arity, etc), but restrict our
analysis to solvers that provide n-ary conjunction, disjunction and summation
propagators, which holds for most constraint solvers.

For illustration, Tab.1 depicts how ∀I(A⇒EI) and A⇒(∀IEI) are flattened
for such solvers: first, the quantification is unrolled, and then each unrolled ex-
pression is flattened, for which we distinguish two cases: (1) if to-be-flattened
expression E is not nested in another constraint, E is flattened to a propaga-
tor (constraint), otherwise, (2) E is flattened to an auxiliary variable (denoted
auxq in Tab.1). Then we compare the resulting flat expressions. For instance,
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Status of Expression Inside-Representation Outside-Representation

Original (∀IA⇒ EI) A⇒ (∀IEI)

Unrolled (A⇒ E1) ∧ · · · ∧ (A⇒ Ek) A⇒ (E1 ∧ · · · ∧ Ek)

Flat a⇒ e1,a⇒ e2,. . . , a⇒ ek aux⇔ e1 ∧ · · · ∧ ek
unnested a⇒ aux

0 auxiliary variables 1 auxiliary variable
k constraints 2 constraints

Flat aux1 ⇔ (a⇒ e1) aux1 ⇔ e1 ∧ · · · ∧ ek
nested . . . auxq ⇔ (a⇒ aux1)

auxk ⇔ (a⇒ ek)
auxq ⇔ (aux1 ∧ · · · ∧ auxk)

k+1 auxiliary variables 2 auxiliary variables
k+1 constraints 2 constraints

Table 1. Comparing the flat representations of the two expressions ∀IA⇒ EI (inside)
and A⇒ (∀IEI) (outside)

the unnested flat inside-representation consists of k implication constraints, in-
troducing no auxiliary variables, while the flat outside-representation consists of
2 constraints (1 reification, 1 implication), introducing 1 auxiliary variable.

We summarise our comparison in Table 2: for each of the four cases, we
compare the inside and outside representation wrt the number of auxiliary vari-
ables (aux) and constraits (cts) in the flat model. This comparison itself is not
conclusive, therefore, we tested each representation in artificial problem models
(consisting of nothing but the respective constraint) and highlight the represen-
tation that was solved in less time in bold face.

The overall result is rather surprising: neither representation generally domi-
nates the other. This is particularly interesting, since the outside-representation
would be expected to generally outperform the inside-representation. However,
clearly, the outside-representation is preferable in most cases. Therefore, in our
empirical analysis, we investigate the special case where the inside-representation
performs better (see Section 5).

Note that it is difficult to make a generic statement on which representation is
preferable: the representations are not comparable wrt propagation since solvers

Table 2. Comparing the number of auxiliary variables and constraints in the flat
models of inside- and outside representation, in (1) the unnested case and (2) the
nested case. The more efficient representation wrt solving time on our test cases is
highlighted in bold face.

Case (2) Case (3) Case (5) Case (7)
inside outside inside outside inside outside inside outside

aux cts aux cts aux cts aux cts aux cts aux cts aux cts aux cts

(1) k k+1 1 2 0 k 1 2 k k+1 1 2 k k+1 1 2
(2) k+1 k+1 2 2 k+1 k+1 2 2 k+1 k+1 2 2 k+1 k+1 2 2
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provide many different propagators. Moreover, we expect that the preferable
representation depends on other expressions in the problem model: e.g. if the
inside-representation shares common subexpressions in the model it might be
preferable, if the outside-representation does not.

The observations from this study are integrated into Tailor that can auto-
matically reformulate expressions into the preferable representation. This means
that the user can choose a standard representation for each quantifier-operator
combination (e.g. outside representation for Case (2), ∀ and ∨) which allows the
user to experiment with different representations. For future work, it would be
interesting to explore learning which representation is best for the given model.

4 Addressing Redundancies from Weak Guards

A guard B for an expression E is a Boolean expression that has to hold in order to
enforce E, i.e. B ⇒ E. Guards are often used in constraint modelling languages
to restrict the number of expressions that a quantification yields. For instance,
consider again the n-Queens model in Example 1, where the diagonal-constraints
use the guard ‘(i!=j)’:

7 $ no two queens on same NW−SE diagona l $
8 f o ra l l i , j : int ( 1 . . n ) .
9 ( i !=j ) => ( q [ i ]+i != q [ j ]+j ) ,

If guards are too weak, they do not eliminate the symmetry stemming from
commutative operators, and hence yield duplicate expressions in the unrolled
quantification. For illustration, unrolling the diagonal constraint above yields
the following set of constraints:

q [1 ]+1 != q [ 2 ]+2 , q [1 ]+1 != q [ 3 ]+3 ,
q [2 ]+2 != q [ 1 ]+1 , q [2 ]+2 != q [ 3 ]+3 ,
q [3 ]+3 != q [ 2 ]+2 , q [3 ]+3 != q [ 1 ]+1 , etc

Note, that the list of constraints contains duplicates, since the guard in the
quantification, ‘(i!=j)’, does not break the symmetry of ‘!=’, which a stronger
guard, ‘(i<j)’, would.

In general, two different kinds of duplication can arise from weak guards.
First, if B is constant (like in n-queens), then duplicate constraints arise when
unrolling the quantification. Otherwise, if B is non-constant, duplicate subex-
pressions arise after unrolling the quantification. Duplicate subexpressions can
be easily eliminated by common subexpression elimination [6]. Duplicate con-
straints are most easily eliminated after unrolling a quantification. If all con-
straints are ordered during compilation, duplicates are positioned consecutively
in the ordered list of constraints and can be detected by testing consecutive
constraints for equivalence (in linear time wrt the number of constraints in the
problem instance [2]). However, this approach is applicable only to instances,
when all parameters are known (for instance, in the diagonal constraints of n-
queens, we can only eliminate duplicates after the quantification is unrolled, i.e.
if n is known). Therefore, we present a more general elimination technique (that
is applicable to a problem class) where guards are automatically strengthened.
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4.1 Strengthening Guards by Unification

Unification is a means to find substitutions that render different logical terms
equivalent [7]. Unification is applied through the unify algorithm that, given
two logical sentences E1 and E2, returns a unifier u (if one exists):

unify(E1, E2) = u where subst(u,E1) = subst(u,E2)

where subst(u,E) denotes the result of applying the substitution u to E. As
an example, consider the two terms (x + i) and (x + 3) that have the unifier
u = {3/i}, i.e. if i is substituted with (i.e. assigned) 3, then both terms are
equivalent. We can exploit unification to eliminate duplicate constraints in the
following way: given a quantification

ϕI : D.BI 	ϕ EI

where ϕ ∈ {∀,∃}, BI is a Boolean guard, 	∀ =⇒ and 	∃ = ∧, and EI is the
guarded expression (considered by its expression tree), we define:

Strengthen Guard(ϕI : D.BI 	ϕ EI)

1. If EI ’s root node corresponds to a binary commutative operator, goto 2.
otherwise stop.

2. Compute the set of unifiers U for the two children of EI , e1 and e2.

3. Search U for unifiers from which we can deduce equivalence of the quantifying
variables. For instance, if two unifiers u1 and u2 are of the form u1 = {ik/il}
and u2 = {il/ik} where l, k ∈ {1..m} and l 6= k, then we can deduce that if
ik = il then e1 and e2 are equivalent. If successful, goto 4, otherwise stop.

4. Add condition C to the guard in order to break the equivalence(s) between
all quantifying variables il and ik whose equivalence renders e1 and e2 equiv-
alent, denoted

∧
k,l(ik = il):

C: conjunction of lexicographical ordering constraints: for each equivalent
pair of quantifying variables, a lexicographical ordering is applied to break
the symmetry stemming from the commutative operator. For instance, for
the pair (ik = il), we get (ik ≤ il) (or (il ≤ ik), depending on the order).
Note, that the lexicographical ordering constraint has to follow a well-defined
order in a consistent fashion.

5. Return ϕI : D.(BI ∧ C)	ϕ EI

Note, that the search for specific kinds of unifiers (step 3) can be implemented
rather easily, since we are looking for unifiers that follow a particular pattern:

u1 = {i1/i2} u2 = {i2/i1}
u1 = {i1/i2 ∧ i3/i4}, u2 = {i1/i2 ∧ i4/i3}, u3 = {i2/i1 ∧ i3/i4}, u2 = {i2/i1 ∧ i4/i3}
etc
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4.2 Example: Strengthening the Guard in Golomb Ruler

For illustration, we show how to strengthen the guard in an example. We consider
a naive model [9] of the Golomb Ruler Problem (find a ruler with n ticks of
minimal length, such that all ticks are positioned within different distances from
another).

Example 4. Naive Golomb Ruler Model from [9].

0 given n : int $ number o f t i c k s $
1 lett ing TICKS be domain int ( 1 . . n )
2 find ruler : matrix indexed by [ TICKS ] of int ( 0 . . n ˆ2)
3
4 minimising ruler [ n ]
5 such that
6
7 f o ra l l i , j : TICKS . $ monotonic ity $
8 ( ( i< j ) /\ ( j <= n ) ) => ( ruler [ i ] < ruler [ j ] ) ,
9

10 f o ra l l i1 , i2 , i3 , i4 : TICKS . $ d i s t i n c t i o n $
11 ( ( i1>i2 ) /\ ( i3>i4 ) /\ ( i2 !=i4 ) ) =>
12 ( ruler [ i1 ]− ruler [ i2 ] != ruler [ i3 ]− ruler [ i4 ] )

Consider the second constraint (line 10-12) that imposes distinction on the dis-
tance between every two ticks. The Boolean guard is weak, since it will result in
duplicate constraints after unrolling the quantification:

( ruler [ 1 ] − ruler [ 2 ] != ruler [ 1 ] − ruler [ 3 ] ) ,
( ruler [ 1 ] − ruler [ 3 ] != ruler [ 1 ] − ruler [ 2 ] ) , etc

Hence, we apply Strengthen Guard to the quantification: first, since ‘!=’ is
commutative, we compute the set of unifiers for the two subtrees (ruler[i1] −
ruler[i2]) and (ruler[i3]− ruler[i4]). There are four unifiers:

u1 = {i1/i3 ∧ i2/i4} u2 = {i3/i1 ∧ i4/i2}
u3 = {i3/i1 ∧ i2/i4} u4 = {i1/i3 ∧ i4/i2}

From these unifiers we can deduce that (ruler[i1] − ruler[i2]) is equivalent to
(ruler[i3]− ruler[i4]) if (i1 = i3)∧ (i2 = i4) and the following condition is added
to the guard:

– C: i1, i2 ≤lex i3, i4, hence (i1 ≤ i3) ∧ (i1 < i3 ∨ i2 ≤ i4).

In summary, Strengthen Guard returns the following quantification with a
strong guard:

f o ra l l i1 , i2 , i3 , i4 : TICKS .
( ( i1>i2 ) /\ ( i3>i4 ) /\ ( i2 !=i4 ) /\

( i1<=i3 ) /\ ( ( i1<i3 ) \/( i2<=i4 ) ) $ cond i t i on C $
) => ( ruler [ i1 ]− ruler [ i2 ] != ruler [ i3 ]− ruler [ i4 ] )

The conditions in the new guard need not be simplified (e.g. (i 6= j)∧(i ≤ j)
to (i < j)) since they are typically quickly evaluated in the translation frontend
(e.g. Tailor).
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factor wrt inside-representation; e.g. points above y=1 depict cases where, using the
inside-representation, in aux variables(top)/constraints(bottom) were increased.

We have not yet implemented Strengthen Guard and hence cannot give
an analysis concerning its runtime. However, we have analysed the effects of
duplicate constraints in constraint models (in order to see if duplicate constraints
actually affect the solving performance). In our empirical analysis (Section 5) we
will see that duplicate constraints stemming from weak guards (in n-Queens and
Golomb Ruler) can significantly slow down the solving process by factor 2-3.

5 Experimental Results

All our experiments were performed on a Mac Pro 4.2 with 8 GB RAM that
contains 2 Quad-Core Intel Xeon 5500 series processors, each 2.26 GHz (hyper-
threading off), using Tailorv3.2.0 , Minion 0.9 and Gecode 3.2.2 with Gecode/FlatZ-
inc 3.2.1 and a timeout of 20 minutes. We use default search heuristics in both
solvers, first searching on the main decision variables (in their order of definition
in the model), followed by auxiliary variables.

5.1 Moving Loop-invariant Expressions

As discussed in Section 3, in some cases, loop-invariant expressions can be moved
inside and outside a quantified expression, yielding either the inside- or outside-
representation. Typically, moving loop-invariant expressions outside a quantifi-
cation is expected to yield the more efficient representation. However, in this
study, we investigate a special case, where the inside-representation dominates
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Fig. 2. Moving loop-invariant Expressions: comparing Solving Time of dif-
ferent Peaceful Army of Queens instances using inside- and outside-representation.
x-axis: solving time with inside-representation; y-axis: increase factor wrt inside-
representation; e.g. points above y=1 depict instances that were solved quicker using
the inside-representation. Points below y=1 depict the opposite.

the outside-representation. More specifically, we compare inside- and outside-
representation of the case

∀IA⇒ EI ≡ A⇒ ∀IEI

in two different models of the Armies of Queens Problem [8] (one of which is
given in Example 2) on solvers Gecode and Minion.

The differences in instances size is depicted in Fig. 1: (top) shows the dif-
ference in auxiliary variables and (bottom) shows the difference in constraints:
the x-axis shows the number of auxiliary variables/constraints using the inside-
representation and the y-axis shows the increase factor in comparison to the
outside-representation. This means that all points above y = 1 depict instances
that contain more auxiliary variables/constraints using the inside-representation.
As expected, we observe that for both solvers, the model using the inside-
representation contains fewer auxiliary variables but far more constraints than
the model using the outside representation.

Figure 2 summarises the comparison in solving time: The x-axis shows the
solving time (in sec) for the inside-representation; the y-axis gives the speedup
factor using the inside-representation: points above y = 1 denote instances that
were solved more quickly using the inside-representation, points below depict
the opposite.

First, most instances, with the exception of two small instances in Gecode,
have been solved quicker using the inside representation. Second, the inside-
representation provides a stronger benefit in solver Minion than in Gecode: in
Minion the speedup factors goes up to 3, while in Gecode solving time is re-
duced by moderate 30%. This difference probably stems from the different fash-
ion and cost of posting propagators in each solver, since the inside-representation
contains many propagators (constraints). Note, that the reformulation of loop-
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invariant expressions takes little time and has hence no effect on the overall com-
pilation time. In summary, the results demonstrate that the inside-representation
is - in this case - preferable to the outside-representation. We can see that, un-
like our expectations, keeping the loop-invariant expression inside the universal
quantification is actually beneficial.
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Fig. 3. Eliminating Duplicate Constraints in naive Golomb Ruler and n-Queens
models. Constraints Increase with n (top) in instances for Gecode and Minion.
Solving Time Increase (bottom) in solvers Gecode and Minion when duplicate con-
straints are not eliminated. For both graphs: y-axis: constraint/solving time increase
factor if duplicate constraints are not eliminated.

5.2 Duplicate Constraints in Constraint Models

We study the effects of duplicate constraints on the naive n-Queens (Example 1)
and Golomb Ruler Problem model (Example 4) as discussed in Section 4, where
we compare models with weak guards to models with strong guards since Tailor
does not yet perform general duplicate elimination, an item of future work.

First, we consider the growth of constraints (duplicates) with increasing n in
both problems for Minion and Gecode, illustrated in Fig. 3(top). The y-axis gives
the constraint increase factor when duplicates are not eliminated. The number of
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duplicates remains fairly the same in n-Queens, while it linearly increases with
n in Golomb Ruler (for both solvers).

Second, we consider the effects of duplicates on the solving time in Fig. 3(bottom).
The y-axis represents the solving time increase factor when instances contain du-
plicates. For example, all Golomb instances solved in Gecode lie above y=2, i.e.
instances with duplicates are solved in more than twice the time used to solve
those without duplicates.

We make three main observations. First, most instances with duplicates are
solved using more time than those without duplicates (most lie above y=1).
Exceptions are some n-Queens instances solved in Minion within 0.005 and 0.1
seconds, hence the differences might stem from external factors, since a 30%
solving time difference is very small in this time frame. Second, we observe that
Golomb Ruler instances with duplicates perform worse than n-Queens instances
with duplicates, probably since the number of duplicates linearly increases with
n in Golomb Ruler. Third, duplicate constraints seem to have a far more negative
effect in Gecode than in Minion, probably stemming from different approaches
(and hence different costs) of posting propagators (constraints) in the solvers.

6 Conclusions

This paper has presented model optimisations concerned with improving quan-
tified expressions. Quantification optimisations are applicable to both problem
instances and classes. As demonstrated on a set of examples, quantification op-
timisations can compensate for poor modelling choices, resulting in a reduction
of solving time to a third. For future work, we plan to extend our investigations
of quantification optimisations and other optimisation techniques to provide fur-
ther enhancement.
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